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Geometrical and dynamical properties of homoclinic tangles in a simple Hamiltonian system

G. Contopoulos
Department of Astronomy, University of Florida, Gainesville, Florida 32611
and Department of Astronomy, University of Athens, GR 157 83-Athens, Greece

C. Polymilis
Department of Astronomy, University of Athens, GR 157 83-Athens, Greece
(Received 4 February 1992; revised manuscript received 26 May 1992)

We study, qualitatively and quantitatively, the forms of the asymptotic curves from an unstable
periodic orbit in a simple Hamiltonian for various values of the energy. The asymptotic curves define
two resonance areas and form infinite elongated “lobes.” We give the exact (not schematic) forms of
such lobes over long times, and formulate certain rules followed by them. The lengths of the lobes of or-
der n are of the order of A", where A is the largest eigenvalue of the periodic orbit. The lobes surround
the resonance areas, spiraling outwards, before going into the large stochastic region outside the reso-
nances. This explains the “‘stickiness” property of the resonance areas over long times. As the energy
increases, the number of rotations of the lobes decreases and the onset of chaos is faster. The lengths
and the areas of the lobes increase considerably. The number of intersections of the lobes increases, and
we find how new tangencies between the various lobes are formed. If the energy goes beyond the escape
energy, certain lobes terminate at “limiting asymptotic curves” corresponding to asymptotic curves of
the Lyapunov orbits at the various escape channels.

PACS number(s): 05.45.+b, 03.20.+1i

I. INTRODUCTION

It is well known that the structure of the asymptotic
curves from unstable periodic orbits on a surface of sec-
tion is extremely complicated. Poincaré [1] wrote that
“one will be impressed by the complexity of this figure,
that I do not even try to draw.” Many people made
sketches of such curves, but often such sketches miss
some important characteristics of the asymptotic curves.
Examples of such cases will be given below. A qualitative
discussion of the intersections of the ‘lobes,” or
“tongues,” formed by the asymptotic curves was made by
Guggenheimer and Holmes [2], Wiggins [3,4], Rom-
Kedar and Wiggins [5], and Contopoulos [6]. These
lobes form the so-called “homoclinic tangle” [2,4] that is
considered to be a characteristic of chaos.

However we will show that the homoclinic tangle has
some degree of order, at least for long times. Namely,
the lobes formed by the asymptotic curves of a certain
resonance do not fill immediately the total available sto-
chastic region but they first make a number of rotations
around the islands of stability corresponding to this reso-
nance before visiting the whole stochastic region. The
number of rotations depends on the energy of the system.

We have studied these phenomena in a simple Hamil-
tonian system. We give the lobes exactly (not schemati-
cally) for long times and derive certain qualitative and
quantitative conclusions about their forms and the chaos
that they generate in the homoclinic tangle.

For small energies the lobes make several rotations
around the main islands of stability before extending to
larger distances. As the energy increases the lobes be-
come longer and deviate faster from the stability regions.
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As the length of the lobes increases, we have new
tangencies and new intersections of the various lobes that
we study in some detail. These tangencies introduce new
sets of stable orbits; therefore, chaos is not complete.

When the energy goes beyond the escape energy some
particles escape to infinity. The problem then arises of
what is the form of the lobes that lead to escapes. We
find that the lobes form infinite spiral rotations around
particular closed limiting asymptotic curves.

The phenomena that we describe in the present paper
are both geometrical and dynamical. In fact the time
dependence of the evolution of the lobes refers to the dy-
namics of the moving particles, and after a long time this
is different from what it is after a short time.

The organization of our paper is as follows. In Sec. IT
we give the main definitions that we use in this paper. In
Sec. IIT we consider the forms of the lobes, their intersec-
tions, and their rotations around the resonance areas, for
a particular value of the energy. In Sec. IV we explore
how the structure of the lobes changes as the energy in-
creases, and, in particular, when the energy exceeds the
escape energy. In Sec. V we find the tangencies between
lobes that lead to new stable and unstable periodic orbits,
according to the Newhouse theorem, and finally Sec. VI
contains our conclusions.

II. DEFINITIONS

We consider the main unstable periodic orbit in the 2D
Hamiltonian system

H=1(x 2+)‘)Z+Ax2+By2)—6x2y=h (1)
for 4 =0.9, B=1.6, €¢=0.08, and various values of the
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energy h, and we study its asymptotic curves (stable and
unstable manifolds on a Poincaré surface of a section).
This periodic orbit is a resonant orbit of type 4, 1e., it
makes one oscillation along x and two oscillations along y
during one period.

On the surface of section x =0 (x > 0) the Hamiltonian
system is represented by a mapping and the main period-
ic orbit by a unique unstable (hyperbolic) invariant point
O (Fig. 1). The mapping is defined by the first intersec-
tions (y’,y ') of orbits starting at points (y,p) on the sur-
face of section, by the same surface of section (x =0) and
in the same direction (x > 0). The point (y’,p ‘) is called a
(Poincaré) “consequent” of (y,y ).

The periodic orbit is unstable for A > h_.~22.17. When
h > h, there are two unstable asymptotic curves starting
from O that we call U and UU (Fig. 1) in two opposite
directions, and two stable asymptotic curves S and SS,
also in two opposite directions. The asymptotic curves
are the intersections of the unstable and stable manifolds
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FIG. 1. Asymptotic curves from the unstable invariant point
O on the surface of section (y,y). We draw exactly (not
schematically) the curves U (unstable) and S (stable), while we
only indicate the directions of UU (unstable) and SS (stable) op-
posite to U and S. The initial homoclinic point P, is at roughly
the same distance from O along the curves U and S and at this
point the curve U crosses S outwards. The area contained be-
tween O and P, along the curves U and S is the resonance area
O,. An orbit starting at P, with X >0 intersects the surface of
section in the positive direction of time at the successive conse-
quents (with x >0), P,,P,,... and along the negative direction
of time at P_,P_,,.... At the points P,, between P,_, and P,,
the orbit from P, intersects the surface of section with x <O.
The arcs P, _ P, along U and S are called U, and S, and define
the lobe U, (outer) if n <0, or the lobe S, (inner) if » <0. The
arcs P,P, along U and S are called U, and S, and define the
lobe U, (inner) if n >0 or S, (outer) if n <0. The areas of suc-
cessive lobes are equal. Because of the symmetry of the problem
the curves UU and SS are symmetric to S and U, respectively.
They define a resonance area O, and symmetric homoclinic
points and lobes.
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of the hyperbolic point O by the surface of section. The
unstable hyperbolic point O is a regular one (not
reflection hyperbolic), therefore points on the curves U,
UU, S, and SS are mapped again on the same curves.

The numerical calculation of the lobes was made as fol-
lows. We started several hundreds or thousands of orbits
with initial conditions along the eigenvectors U, UU in
the positive time direction and along the eigenvectors S,
SS in the negative time directions. In both cases we start-
ed very close to the unstable point O, and we calculated
the successive Poincaré consequents (iterates of the map-
ping). The deviations of the initial points, on the eigen-
vectors, from the real asymptotic curves decrease by a
factor A (where A is the largest eigenvalue of the point O)
at every iteration. On the other hand, the deviations
along the asymptotic curve increase by a factor A, where
A is of order 2. Thus an initial error of order 10~ !¢ (accu-
racy of double precision calculations) becomes large (of
order 1) after about n =16/1In2 =50 iterations.

By comparing empirically orbits in double and quadru-
ple precision we found that at least 80 successive double
precision consequents are accurate to about the second
decimal place. In cases where we had to go to longer
periods we used quadruple precision, which is expected to
give accurate positions up to n =160 iterations. The cal-
culated lobes refer to about n =15 iterations, and they
are extremely accurate. Even the distribution of conse-
quents up to about n =140, given in Fig. 8, in quadruple
precision, is quite accurate. However, if we extend our
calculations to much longer periods we find exponential
deviations that affect not only the positions of indi-
vidual consequents but also their overall distribution.

The curves U and S intersect each other at infinite
homoclinic points. As an initial homoclinic point P, we
consider one that is roughly at equal distances from O
along U and S, and the U curve crosses the .S curve at P
outwards. The area contained between the arcs OP,
(along U) and the arc P,O (along S) is called a resonance
area. There are two resonance areas, O, and O,, one
below O and the other above it. If 4 is not very large
(h <26.78), inside each resonance area we have a stable
invariant point.

The consequents of P, in the forward time direction
are P,,P,, ..., P, along the arc P,O on the S curve, and
they approach asymptotically O as n— « (Fig. 1). The
consequents of P, in the backward time direction are
P_,P_,,...,P_, and they also approach asymptoti-
cally O as n — . At every point P, (rn >0) the U curve
crosses the arc P,O outwards, while at every point P_,
the S curve crosses the arc OP inwards in the positive
time direction (into the resonance area). Between two
successive points P,_; and P,, there is a point P, at
which the curve U intersects the arc P,O inwards, and
between P_, | and P_, there is a point P’_, at which
the curve S intersects the arc OP,, outwards. We call U,,
S, the arcs of U and S between P, _, and P, and U, S,
the arcs of U and S between P, and P, (for n=0).

The area between U, and S,, or between U, and S, , is
called a lobe. The lobes U,S, (n>0) are called U lobes
(U, U,,... in Fig. 1), and they start inwards towards the
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FIG. 2. The whole set of asymptotic curves U, S, and UU,
SS. The points Py, Py,... are symmetric to Py, Py, ..., and the
arcs UU,, UU,, SS,, SS, are symmetric to the arcs S,, S,, U,,
U,, respectively. We notice that there are intersections not only
between the lobes U and S’, but also between the lobes U’ and
SS' and between the lobes UU’ and SS, or between UU and S.
(If we follow the asymptotic curves for longer times there are
also intersections of the U’ lobes with S, etc.)

resonance area O, while the lobes U,S, are called U,
lobes (U, U3,...), and they start outwards from the res-
onance area. For small n the whole lobes U, are inside
the resonance area, but for large n they may have a part
outside it. Similarly for small n the whole lobes U, are
outside the resonance area, but for large n they have a
part inside it.

Similarly we have inner lobes S’ , (n=>0) between
U’ , and S_, and outer lobes S_, (n =0) between U _,
and S_,. These lobes are formed by the oscillations of
the asymptotic curves S.

When n varies and takes both positive and negative
values, we call a lobe U,S, either a U, lobe or an S,
lobe, and a lobe U, S, either a U, lobe or an S, lobe. In
the same way we define the UU lobes and the SS lobes
(Fig. 2).

III. THE STRUCTURE OF THE LOBES

It is obvious that the lobes U, (=S,) and U, (=S,) are
mapped into U, ., (=S, ;) and U, (=S, ) respec-
tively, for all n. The corresponding areas are equal, be-
cause the system is Hamiltonian. Furthermore the areas
between U, and S, and between U, and S, are equal be-
cause of the symmetry of the Hamiltonian with respect to
x.

If two lobes intersect, so do their images. For example,
in Fig. 1 (h =24) the lobes S__, and Uj intersect. Thus
the lobes S’ ; and U, also intersect, and the common
area is the same. The same is true for the lobes S_, and
U,, the lobes S’ 5 and U, and so on. We can state this
property as follows.

A U,, lobe intersects an infinity of S_, lobes up to a
last S’_, lobe with a minimum n =n,. Then the previous

U lobe (i.e., the lobe U,, _,) intersects all S__, lobes up to
the previous S, lobe (i.e., the last S, lobe has then
n=ny+1.

This basic property is not seen in the intersections of
the schematic lobes of the classical books of Moser [7]
(see his Fig. 17), and Gutzwiller [8] (his Fig. 24). These
figures represent the intersections of the U and S lobes
but cannot be used to derive the details about the proper-
ties of these intersections. In order to find such details
we need more accurate figures.

In order to see the form of the asymptotic curves for a
longer interval we give in Fig. 3 the asymptotic curves U
and UU up to a total of 100 orbits times 16 consequents
each, equal to 1600 consequents, in Fig. 4 the asymptotic
curve U up to a total of 2200 orbits times 15, equal to
33000 consequents, and in Fig. 5 the asymptotic curve U
up to 4000 orbits times 15, equal to 60 000 consequents.

In Fig. 2 we see that the UU,,UU, and SS,,,SS, lobes
are symmetric to the S,,S, lobes and U,,U, lobes, re-
spectively, and the homoclinic points Py, P,,... are sym-
metric to Py,P,.... In Fig. 3 we give the lobes beyond
the point P, from UU, up to UU_s, which are sym-
metric to the lobes S, to S_s of Fig. 1, and the lobes
UU'_, to UU"_s, symmetric to the lobes S ; to S_s of
Fig. 1. We have also the outer lobes U] to U5 and the
inner lobes U, to Uy. In Fig. 4 we give the inner lobes up
to Uy, and the outer lobes up to U},.

In Fig. 1 we see that the inner U, lobes with small m
intersect only inner S”_, lobes. However for larger m the
inner U,, lobes also intersect SS, lobes (compare U,; of
Fig. 4 and the SS, lobes of Fig. 2). On the other hand,
the outer U,, lobes intersect not only outer SS, lobes, but
also outer S_, lobes (compare the lobes Ug, U}, of Fig. 4
with the S _, lobes of Fig. 2).

The outer lobes U, approach the curve UU close to O
as n increases. However near the end points of the lobes
U, the deviation from UU, which becomes smaller up to
n =6, increases for larger »n.
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FIG. 3. The asymptotic curves U and UU up to the lobes Ug,
Ujand UU_s, UU"_s.
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FIG. 4. The asymptotic curve U up to the lobes U,; and U},.
We notice that the higher-order inner lobes U have parts that
are outside the original resonance area O;.

In Fig. 3 we see that the outer lobes U, tend to sur-
round the resonance area O, in a clockwise direction.
Similarly the UU _, lobes tend to surround the resonance
area O,.

As the order n of the lobes U, increases beyond 7 the
U, lobes surround more and more completely the reso-
nance area O, (lobes Ug, Uy, Uy, U}, of Fig. 4), and for
even larger n the U, lobes tend to also surround the reso-
nance area O, (U},). As n goes beyond 12, the tongues
go around the resonance area O, then once more around
the resonance area O,, and so on.
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FIG. 5. The asymptotic curve U up to the lobe Uj. The
lobes up to U’ are close to the resonance areas O,0,, while the
higher-order lobes deviate further away. In particular the lobes
Ujs, Uy go quite far from 0, 0,.

In Fig. 4 we notice that while the end points of the
lobes Us,Ug,U; are the most remote points from O
along these lobes, in the case of the tongues Ug, Uiy, Uy,
the end points are closer to O than the most remote
points of the lobes. The most remote points U}, ..., U},
form a complete rotation around the point O, surround-
ing both resonant regions, O, and O,.

The lengths of the higher-order lobes are of the order
of A", where A is the largest eigenvalue of the unstable or-
bit O and n is the order of the lobes. This is due to the
fact that the distance between P, and P, decreases by a
factor A as n increases by one. Therefore as the areas of
the lobes U, and U, ., are equal, the length of the lobe
U, 4+, is A times larger than the length of the lobe U,.
We have checked numerically that this relation is
satisfied close to the point O. However further away
from O and close to P, the lengths of the lobes deviate
from this simple relation. In Table I we give the lengths
of several lobes and their ratios. We see that the ratios
approach A=2.204 or 1/A=0.454 as the order of the
lobes increases.

It is difficult to draw the higher-order lobes because of
the complexity of the figures. In Fig. 5 we give the lobes
U, up to n =26. We notice that the lobes up to Ufg
remain rather close to the resonant regions O,,0,, but
later they extend to large distances from these resonant
regions (compare the scales of Figs. 4 and 5).

The successive lobes pass between the previous lobes
and the resonant regions, but extend further outwards.
For example, the lobe Uj, in Fig. 4 is initially on the
inner side of the lobe Uy (closer to the resonance area
0,), but then extends beyond Ug and further away from
0O,. The lobe U}, follows U}, but it goes beyond it and
even further away from O,. The same is true with the
lobes U',, Ujs, U, that surround the resonance area O,
and so on.

The lobe U}, undergoes some oscillations near its end
point, approaching and receding from the resonance area
O,. The lobes U},, U};, U}, contain much longer oscilla-
tions along the left side of the area O, close to the curve

TABLE I. Lengths of lobes.

Length Ratio Length Ratio
U, 0.734 S 0.742
1.07 1.08
v, 0.686 S, 0.684
1.32 1.86
U, 0.521 S; 0.367
0.53 2.02
U, 0.977 Sy 0.182
0.46 2.14
Us 2.106 Ss 0.085
U, 0.612 S5 0.588
0.93 1.59
U, 0.655 S3 0.370
0.54 2.02
U, 1.205 Si 0.184
0.49 2.20
Us 2.472 S5 0.084
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UU. However we emphasize their outermost parts that
surround in a clockwise direction the area O,.

In Fig. 5 we see that the outermost lobes Ujs, U
reach distances from the resonance area O,, O, that are
larger than the total sizes of the resonance areas. Thus we
may distinguish two regions occupied by the lobes. (1)
The region around the resonances O,;, O,, where the
lobes are tightly wrapped, and (2) the region further away
from O,, O,, where the lobes are more sparsely distribut-
ed. In the first case we have a localized chaotic behavior
around O, and O,, while in the second case the chaotic
behavior is more extended.

In this larger region there are many resonance areas of
different multiplicities, including several stable islands
and asymptotic curves from various unstable periodic or-
bits. Our lobes avoid the stable islands and follow certain
rules in their intersections with the asymptotic curves of
other multiplicities. The intersections of the asymptotic
curves of various types are planned to be discussed in a
future paper. At any rate the appearance of heteroclinic
intersections is the most prominent characteristic of
chaos.

One way to get an idea of the structure of the higher-
order lobes is by calculating a few orbits for a much
longer time. Such a calculation is shown in Fig. 6. We
mark 39 successive Poincaré consequents of an initial
point B, (y,=2.612, y,=—0.8, x =0, % >0), located in
the common area of the lobes Us and S”,. The conse-
quent B, belongs to the common area of the lobes Uy and
S’ |, and in general the consequent B,, belongs to the
common area of the lobes U,, ,sand S,, _,.

We see that the consequents B, and B, are inside the
resonance area O;, but the consequents B;,B,,Bs,. ..
are outside this area, although they belong to the “inner”
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FIG. 6. The first 39 consequents of a point B (located inside
the intersection of the inner lobes Us and S'_,). The successive
consequents are joined by dashed lines. These lines spiral clock-
wise outwards.

lobes U4, Usg, U,. . ..

The consequents B,,...,B;s make a complete rota-
tion around the unstable point O, and B5 is close to B,,.
Then the consequents continue in a clockwise spiral
direction outwards, forming a second rotation up to B,
a third rotation up to B4, and a fourth rotation up to
B,,. The consequents continue spiraling outwards up to
B,; (Fig. 7). From then on they spiral inwards and then
again outwards in a very irregular way, and cover the
whole stochastic region. At this stage we have a large de-
gree of chaos, covering a much larger area than the reso-
nance areas 0,0, (Fig. 7).

The total number of outward spiral rotations is 4, be-
fore most of the stochastic region is covered (sparsely) by
the consequents B, and the very irregular motion of these
consequents sets in. The total number of outward spiral
rotations decreases on the average as the energy in-
creases.

The general arrangement of the consequents of By is
shown by the circles of Fig. 8. We see that the area
covered by the scattered circles is a large part of the total
available area, inside the circle defined by the energy in-
tegral. The stochastic region of Fig. 8 contains also other
resonances and unstable periodic orbits of various multi-
plicities that form their own sets of asymptotic curves.

We have repeated the calculations of the consequents
from two initial points B (y=2.612, y (=—0.73) and
B (y,=2.61, y=—0.85) very close to the point B, in
the same common area of the lobes Us and S’ ,. The
seven first consequents of B; and B( are quite close to
B, — B, but the subsequent consequents have greater de-
viations. The overall distribution of the points B, is
similar to that of the points B,,. However the conse-
quents B,, move faster outwards. For example, the suc-
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FIG. 7. Continuation of the consequents of B, from B;, to
Bsy. The lines joining successive consequents spiral clockwise
outwards up to By, and from then on they move inwards and
outwards in a very irregular way.
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FIG. 8. The distribution of 140 successive consequents from
B, (circles) and 140 successive consequents from A, (stars).
The outer circle represents the boundary of the available space,
defined by the energy integral, while the curve inside the bound-
ary, defined by dots, represents one of the innermost well-
defined KAM curves surrounding the stochastic region. Most
of the area inside this curve is filled with chaotic orbits, but
there are also some islands of stability, like those inside the res-
onance areas O, and O,, defined in Fig. 1, where closed invari-
ant curves also exist. Notice the difference of scales between
Figs. 8, 7, and 6.

cessive clockwise rotations are completed at B,, B33, and
before Bjg. After about three rotations around O, O,,
the consequents reach a maximum distance from the res-
onance areas and from then on they follow a very irregu-
lar pattern.

On the other hand, the consequents of B remain close
to the resonance areas O, O, for extremely long times.
Namely after one rotation around both O, and O, they
make two rotations around O,, one rotation around O,,
and then at least five rotations around both O, and O,.
We reached B, and the consequents are still close to the
regions O, O,.

We can “explain” the difference in behavior of the con-
sequents of B, B, B by following the elongated forms
of the lobes to which they belong. For example, the con-
sequents Bs, B, By belong to the lobe U,,, which is in-
side the outer lobe U} (Fig. 4). Similarly the consequents
B,,, B,,, B, belong to the lobe U,, . s, which is inside the
lobe U, _,. However beyond m =12 the consequents
B,,, B,, move in a clockwise direction around O, sur-
rounding both regions O,;, O,, while B,  remains for
some time (up to B%,) inside O,. The corresponding lobes
U,, +5 are extremely elongated, and the distances of the
points B,,, B,,, B, become as large as the total dimen-
sions of the resonance areas O,, O,. For example, for
m =24 the point B,, is at the upper end of O,, while B,
is at the lower end of O;. In a similar way for m =18 the
point By is at the upper end of O,, while B g is near the
lower end of O,. This implies that from ticn on there is

practically no correlation between the behavior of B,,
and B,, or B,,.

The deviation between nearby orbits increases ex-
ponentially in time. This is easily seen if we have points
along an unstable asymptotic curve (U or UU) close to O.
An initially small deviation D along this curve increases
by a factor A after one iteration, where A is the maximum
eigenvalue of O. Thus after m iterations the distance is of
order DA™. A similar behavior appears for points out-
side the asymptotic curves. This exponential deviation
leads to a positive maximal Lyapunov characteristic
number.

We calculated also the consequents of a point A4,
(y9=2.612, yo=—01.0, x =0, x >0) which is near the
end of the lobe Us, below the lobe S’_;. The consequents
A, - A4 make six rotations around the resonance area
O,, and then they spiral outwards around both resonance
areas O; and O, up to Ag. From then on the conse-
quents scatter in an irregular way over the whole stochas-
tic region. In Fig. 9 we give the consequents A gy~ A4gq.

The deviations of the points A4,, from the correspond-
ing points B,, start to be important rather early. Name-
ly, while both B and A belong to the lobe U, Bs is in-
side the lobe U}, while A5 is just outside the lobe U,
(Fig. 4), which is a continuation of Uj. The point 4, is
close to A, but outside the lobe Us, while B, is well
above A5, in the lobe U;. From then on B,, (m=7)
moves upward and then rotates around O, and O,, while
the corresponding 4,, makes several rotations inside O,
before going out of O; beyond A4,,. As a consequence
the distribution of the consequents of A is rather different
from that of the consequents of B for rather long times
(Fig. 8).

The consequents of A4, are given as stars in Fig. 8 for
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FIG. 9. Some of the successive consequents of 4, (near the
end of the inner lobe Us). The consequents up to A3y are
trapped inside the resonance region O, while the consequents
from Asg— Ay are outside the resonance regions O; and O,.
The successive consequents from Ag-— A are joined by
straight lines, and they spiral clockwise outwards.
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about the same time interval as the consequents of B,
(circles). This figure contains 140 circles and 140 stars,
calculated in quadruple precision, and their positions are
more accurate than the sizes of the stars and circles. The
overall distribution of the stars seems much more concen-
trated close to the outer boundaries of the resonant re-
gions O; and O, than the distribution of the circles.
However the stars actually extend as far away from O as
the circles, and we do see some stars far away from O.
But the density of the stars is quite different from that of
the circles for very long times (up to m > 140). Therefore
the chaotic behavior of the consequents of two points (B,
and A,) that are initially rather close along the same U
lobe is rather different, although it is expected that after
even longer times their average distribution should be
similar. Similar results were found for the consequents of
points initially close to 4.

The rotation of the outer lobes U,, S_,, and UU_,,
SS, around the resonance areas O,, O, explain the
“stickiness property” of the outermost KAM curves sur-
rounding stable invariant points. In the present case the
invariant points O;, O, are surrounded by closed invari-
ant curves that extend outwards up to the inner limit of
the homoclinic tangle produced by the asymptotic curves
of O. The outermost KAM curves are not well defined.
The outer KAM curves around O, or O,, form more
and more corrugations as they approach the higher-order
inner lobes of the homoclinic tangle, and the outermost
KAM curve should be a fractal [9,10]. The case that we
consider here is different from the “destruction” of the
“last KAM curve” with a golden rotation number [11],
when the perturbation parameter p of a system goes
beyond a critical value, u,. The last KAM curve for
©w=p, is a fractal, and it becomes a cantorus for larger pu.
In the present case, however, we consider the outermost
KAM curve among the invariant curves of the island O,
for a fixed value of the energy, which is also a fractal.
This case is also quite general.

If we start an orbit within a lobe in one of the reso-
nance areas O, O,, this orbit follows the images of this
lobe and makes several rotations around the resonance
areas O,, O, before going far away. Thus, although the
stochastic region is much larger than both resonance
areas O, O,, the successive consequents stay close to the
resonance areas for a long time (of the order of
n=30-150) before going away from these resonance
areas (Figs. 6-8).

This is why the resonance areas are sticky, i.e., the con-
sequents of initial points in their neighborhood stay close
to them for a long time before going far away. This time
is larger for smaller energies 4 and decreases as A in-
creases. The stickiness phenomenon was observed in nu-
merical experiments by Contopoulos [12] in a problem
equivalent to the present Hamiltonian (1). The term
“stickiness” was introduced by Shirts and Reinhardt [13],
and this property has been emphasized by various au-
thors [14].

As we have seen, the deeper reason for the stickiness
phenomenon is connected with the form of the lobes in
the homoclinic tangle of an unstable periodic orbit. We
may say that as long as the lobes rotate close to the reso-

G. CONTOPOULOS AND C. POLYMILIS 47

nance areas we have partial order, and chaos is not com-
plete. Only when the lobes occupy the whole stochastic
region we have well-established chaos, and no more a
sticky behavior.

IV. THE LOBES FOR LARGER ENERGIES

When the energy increases from 4 =24 to h =24.5 and
h =25 the forms of the asymptotic curves are qualitative-
ly similar, but they have several quantitative differences.

Figure 10 gives the asymptotic curves U and S that
form a few lobes U,U’, S,S’ in the case h =24.5. If we
compare this figure with Fig. 1 we see the following
changes.

(i) The resonance area O, is larger.

(ii) The lengths and the areas of the lobes are much
larger.

(iii) There are new intersections of the lobes U and S’.
For example, in Fig. 1 the lobes S’_; intersects the lobes
U,, Us, etc. But in Fig. 10 the lobe S’ ; intersects also
the lobes U, and U,.

The case h =25 is even more extreme, as shown in
Figs. 11 and 12, in comparison with Figs. 1 and 4. The
lobe U} already surrounds the resonance area O,, rough-
ly to the extent of the lobe Uy of the case h =24. The
lobe U makes almost 1] rotations around O and reaches
a large distance from O, deviating considerably from the
resonance area O,. The lobe Uy also deviates consider-
ably from the resonance areas. This extends roughly to
the distance of the lobe Uy of # =24. The lobes Us, U,
U’ reach almost the maximum possible distance from O
inside the outer last KAM curve that surrounds the
whole stochastic region around O.

In Fig. 13 we give the area of a lobe as a function of the
eigenvalue A of the periodic orbit O. For A=1 the area 4
is zero. For small values of (A—1) the area 4 increases
roughly as (A—1)%%, but for A22.7 (i.e., h 225) A4 in-
creases roughly as (A—1)*. As a consequence the lengths
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FIG. 10. The asymptotic curves U and S in the case # =24.5.
Compare with Fig. 1, noticing the difference of scales.
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FIG. 11. The asymptotic curves U and S in the case h =25
up to the lobes U} and S_,. Compare with Fig. 1, noticing the
difference of scales.

of the lobes of the same order n increase considerably
with the energy. As A increases even further we have two
more new phenomena.

(iv) The lobe U} becomes so elongated and deformed
that it crosses the line S between P} and P, and enters
the resonance area O, (Fig. 14, h =27.80). At the same
time the lobes U, and S| are almost tangent inside the
resonance area O,. Thus there is no stable region inside
the resonance area. In fact the orbit O, becomes unsta-
ble for # =26.78. For still larger 4 the lobe U] itself in-
vades a large part of the resonance area O,.

(v) If h becomes larger than the escape energy
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FIG. 12. The asymptotic curve U in the case h =25 up to U}
and Us. Compare with Fig. 4. Notice the very great difference
of scales.
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FIG. 13. The area of a lobe (in arbitrary units) as a function
of the maximum eigenvalue A of the periodic orbit O.

h.s. =25.31, some asymptotic orbits go to infinity. In the
present problem the equipotentials for 4 > k. have two
openings that we call escape channels, because orbits
passing through any such opening extend in general to
infinity. At every such opening there is an unstable
periodic orbit, usually called a Lyapunov orbit, which is
close to a straight line bridging the opening. Every orbit
crossing such a Lyapunov orbit outwards escapes to
infinity [15,6].

The asymptotic curves of any given unstable periodic
orbit that intersect the asymptotic curves of a particular
Lyapunov orbit make infinite spiral rotations, around a
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FIG. 14. The asymptotic curves U and S in the case
h =27.80. The lobe U} is very elongated and intersects the line
S between P} and P, (there are two intersection points as we
proceed from P, towards the end point of the lobe, and two
more when we return towards P}). The curves S and U, are
almost tangent.
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special curve, called a “limiting asymptotic curve” [6].
This curve is the intersection of the surface of section by
the 3D asymptotic surface (unstable manifold) of the
Lyapunov orbit. Such a spiral is the curve Uj for
h =27.8 (Fig. 14), which forms infinite clockwise rota-
tions and tends to a limiting asymptotic curve on the
right of the point O.

In the case of the Hamiltonian (1) there are two escape
channels, and each channel is crossed by a Lyapunov or-
bit (Fig. 10 of Contopoulos [6]). In the present case the
axes (x,y) are interchanged with respect to our previous
paper [6], and the escape channels are upwards and to the
right or the left. The asymptotic orbits may escape (when
t— + o) either upwards and to the left (going to
x=—o00, y=o0), or upwards and to the right (going to
x =o0,y=-c0). The curve U] for h=31.3 (Fig. 15) tends
to the first limiting asymptotic curve, and the orbits es-
cape to the right, while the curve U} for h =27.8 (Fig.
14) tends to the second limiting asymptotic curve, and
the orbits escape to the left.

The limiting asymptotic curves are formed immediate-
ly as h increases beyond the escape energy A =25.31.
However a particular lobe is transformed into a spiral
with infinite rotations about a particular limiting asymp-
totic curve only after 4 goes beyond a critical value A/.
This critical value depends on the particular lobe con-
sidered. For example, the lobe U} tends to a spiral for
h =h/ smaller than the critical value # =h, required for
U] to form another spiral.

In the same way we have two limiting asymptotic
curves as t— — . These are symmetric to the limiting
asymptotic curves for t— -+ o0 with respect to the axis
y =0, and they are limits of S_, lobes. For example, the
curve S_; in Fig. 14 forms infinite rotations and spirals
inwards, in a counterclockwise direction, to a limiting
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FIG. 15. The asymptotic curves U and S in the case

h =31.30. The asymptotic curve U} (beyond P,) forms infinite
clockwise spiral rotations inwards, tending to a limiting asymp-
totic curve. The curve U] is almost tangent to the inner lobe
So-

asymptotic curve for z— — o0. The orbits starting along
the curve S_; escape to the left (x =—o0, y =c0) as
t — — . This limiting asymptotic curve is symmetric to
the limiting asymptotic curve for t— + o reached by the
curve U] in Fig. 15. This symmetry is due to the symme-
try of the Hamiltonian (1) with respect to x (but of course
the size of the limiting asymptotic curves changes with
the energy h). In Fig. 14 (h =27.8) the lobe U] has not
yet reached the form of infinite spirals. It reaches this
form for 4 between h =27.8 and A =31.3.

In a similar way the curve S, in Fig. 15 (h =31.3)
spirals, in a counterclockwise direction, towards a limit-
ing asymptotic curve as ¢t — — o, which is symmetric to
the limiting asymptotic curve for ¢— + oo, that is
reached by the curve U} for h =27.8 (Fig. 14). The or-
bits starting along S, escape to the right (x =0, y =
as t— — ). By comparing Figs. 14 and 15 we see that
the limiting asymptotic curves reached by U} and S, in-
tersect, while the limiting asymptotic curves reached by
S_, and U] are well separated.

The asymptotic curve U] of Fig. 15 has infinite length
and does not return to form a complete lobe. Thus we do
not have any consequents P},P,,.... This means that
the orbit starting at P, upwards (with X >0) escapes to
infinity and does not intersect again the surface of section
x =0 downwards (with X <0). The same is true for or-
bits starting along the arc OP, of U, a little before Py,.
However orbits starting close to O do intersect the sur-
face of section again. The orbit starting at P_, (Fig. 15)
intersects the U curve downwards (with (x <0) at P and
upwards (with x >0) at P,. If we start orbits with x >0
and initial conditions along P_ P, beginning at P_,, we
have the next consequents with x >0 along U}, beyond
P,. But as we proceed towards P the consequents of the
orbits with initial x >0 disappear, before the initial point
reaches P, because the orbits extend to infinity. There is
a limiting point between P_, and P that separates the
orbits that escape from those that do not escape before
the next consequent with x >0. This point is a hetero-
clinic point representing a doubly asymptotic orbit that
approaches a Lyapunov orbit as t— + « and the reso-

nant 1 orbit as t— —co. This phenomenon was de-

2

scribed by Contopoulos [6].

As we proceed beyond this heteroclinic point along the
curve P_ P, we find further heteroclinic points and arcs
of the asymptotic curve, starting and ending at the same
limiting asymptotic curve. This phenomenon we found
earlier [6] for the asymptotic curve of a Lyapunov orbit,
but we verified that it is also valid for the asymptotic
curve of the 1 orbit, which we study here.

V. TANGENCIES

A comparison of Figs. 1 and 10 shows that as 4 in-
creases the various lobes increase their number of inter-
sections. Thus it is of interest to see how these new inter-
sections are produced.

For h =24 the lobe S’_, intersects the lobe Us but not
U,. Similarly the lobe S'_; intersects U, but not U;.

When h =24.065 all the lobes become longer, and the
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FIG. 16. The tangency of the lobes U,, S"_, and of U3, S";,
etc. for h =24.05.

lobes S, and U, are tangent (Fig. 16). Also the lobes
S’ ; and U, are tangent. In general the lobes U,, and
S,, _¢ are tangent.

When h =24.075 the lobes S’_,, U, and S’ 3, U_, in-
tersect (Fig. 17). When h =24.1 the lobes S__,, U, pass
through each other and the same happens with the lobes
S’_;, U; (Fig. 18).

In the transition case between Figs. 17 and 18 it seems
that the curves S’ , and U, have an odd tangency, i.e.,
they are tangent and at the same time they cross each
other. This happens for h =24.095.

As h increases further the lobes become longer and
even further tangencies appear. As we remarked already,
for h =24.5 the lobe S’_; crosses not only the lobe U, but
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FIG. 17. The lobes U,,S’, and U,;,S’; intersect for

h =24.075.
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FIG. 18. The lobes S, and S’ ; pass through the lobes Uy,
U,, respectively, for h =24.1.

also the lobes U; and U,. Similarly the lobe S'_, crosses
not only the lobe Us, but also the lobes U, and U,.
When h =25 the lobe S, intersects not only the lobe
U, but also the lobe U,.

This increase in the number of intersections of the
lobes is a natural consequence of the lengthening of the
lobes, which in turn is due to the increase of the eigenval-
ue A of the periodic orbit O as the energy increases.

The increase in the number of intersections of the lobes
increases the degree of stochasticity and diffusion in
phase space, because it produces faster mixing of the
various regions of phase space. A particular case of a
tangency of the lobes S'_, with U,, S’_; with U, etc. fol-
lowed by a corresponding large degree of chaos is shown
in Fig. 19.

Another consequence of the new tangencies is the fol-
lowing. Whenever two lobes are tangent the theorem of
Newhouse [16,17] shows the existence of nearby stable
periodic orbits. These orbits disappear when 4 is reduced
and the tangency disappears. Therefore these orbits are
not generated by bifurcation of other periodic orbits, but
they are ““irregular” orbits [18], generated by a tangent
bifurcation in a pair of a stable and an unstable periodic
orbit. All these stable periodic orbits become unstable
after an infinite cascade of periodic doubling bifurcations
for a little larger 2. However for an interval Aa of values
of h there are stable periodic orbits, surrounded by corre-
sponding islands of stability.

As h increases there appear more and more new
tangencies of the various lobes that produce new stable
periodic orbits and new islands of stability. We conjec-
ture that in a bounded system for arbitrarily large ener-
gies h (or perturbations) there are intervals (Ah) for
which chaos is not complete, but the phase space con-
tains islands of stability. In other words there is no value
of h beyond which chaos is complete.

However if the phase space is unbounded (for 4 larger



1556
6.00
Y ]
2.00
~2.00
] ::"\'-":»m:_',,-v-.-;.-rl“‘"’m"
T e —
~3.00 ~1.00 1.00 . +3.00 5.00

Y

FIG. 19. The intersections of the asymptotic curves U and S
in the case h=25.3242 when we have tangencies S_,U,,
S_3U,, etc.

than the escape energy h.) the number of tangencies of
the main lobes, as % increases, is finite. In the present
model we give the tangencies for the corresponding
values of & and A in Table II. We give also the differences
Ah,AA and the ratios & and &' of the successive Ah and
AA, and we notice that these ratios are almost equal.

The last case of Table II is close to that of Fig. 14. If &
increases to A =31.30 (Fig. 15) the lobe U] enters into
the resonance area O, and becomes tangent to S;. How-
ever in this case we cannot find more tangencies (like
U,S}), because the lobe Uj terminates, after infinite
spiral rotations, at a limiting asymptotic curve, and there
are no branches Uj, Uj, etc. This means that the se-
quence of tangencies terminates because the asymptotic
curves terminate due to escapes.

As h decreases, we have infinite higher-order tangen-
cies that tend to the value h =h;=22.17 at which the
periodic orbit O becomes stable. Therefore the intervals
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Ah become smaller and smaller, as & — h(, and the ratios
8 tend to 1.

On the other hand, as A& increases beyond
h =h..=25.31, some lobes become incomplete because
of escapes, and the sequence of tangencies terminates.

VI. CONCLUSIONS

We have studied the asymptotic curves from an unsta-
ble invariant point O, representing a periodic orbit of or-
der L, in the Hamiltonian H=21(x?+y+ Ax?
+By?)—ex?y =h, for various values of the energy h.
The asymptotic curves are the intersections of the unsta-
ble and stable manifolds of the periodic orbit by a Poin-
caré surface of section. The unstable asymptotic curves
U, UU intersect the stable asymptotic curves S, SS at
infinite homoclinic points and form infinite lobes, on the
surface of section, that create the so-called homoclinic
tangle. We studied the behavior of these lobes as their
order increases.

In the present model there is a symmetry between the
curves U, S and SS, UU, respectively. The curves U and
S from O up to the main homoclinic point P, opposite to
O, define a resonance area O, and the curves UU, SS a
symmetric resonance area O,.

Some conclusions of the present study are the follow-
ing.

(1) The intersections of the lobes U and S’ follow cer-
tain rules. For example, if U,, and S'_, intersect, so do
U, ., and S"_, , for any integer k, positive or nega-
tive.

(2) The outer lobes U, tend to rotate in a clockwise
way around the resonance area O,. As n increases, they
spiral outwards, surrounding both resonance areas, O,
and O,. The inner lobes U, go also outside the resonance
area O, surrounding O, and O,.

The lobes UU,,, UU, form similar spirals. The spirals
U,, U, and UU,, UU, surround one another.

(3) The lobes remain close to the resonance areas O,
0,, up to a certain order n. This behavior explains the
“stickiness” property of the resonance areas.

(4) As the order n increases beyond a certain number,

TABLE II. The energies and eigenvalues at various tangencies.

Tangencies h Ah o) A AA &'

U, S, (... UsS" 3, UsS"4,...) 23.859 2.1355
0.206 0.1000

U, S, _o(...US"5,UsS"3,...) 24.065 0.74 2.2355 0.74
0.280 0.1349

U,S, _s(...US",,U,S";,...) 24.345 0.70 2.3704 0.70
0.400 0.1921

U,S, _4(...US_,U,S",,...) 24.745 0.67 2.5625 0.67
0.597 0.2882

U,S._3(... Uy, 8", U,S",,...) 25.342 0.63 2.8507 0.62
0.948 0.4679

U,S, (... US;,US",,...) 26.290 0.61 3.3186 0.58
1.550 0.8056

U, S, _(...US,, USS,...) 27.840 4.1242
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the spiral lobes deviate away from the resonance areas
0,, O0,. They reach a maximum distance from O and
from then on the lobes are very irregular, covering the
whole available space inside the outer KAM curves (that
surround the whole stochastic region around O).

(5) The number of spiral rotations of the consequents,
close to the resonance areas O, O,, depends on the ini-
tial conditions. Slightly different initial conditions give
different numbers of spiral rotations. However the aver-
age number of rotations decreases as the energy A in-
creases.

(6) The length of each successive lobe is roughly A
times longer than the previous one, where A is the largest
eigenvalue of O. Thus the length of a lobe of order # is of
the order of A".

(7) As h increases the resonance areas increase, and the
areas of the lobes increase considerably (as a high power
of the eigenvalue A).

(8) The number of intersections of the various lobes in-
creases as h increases. For example, for 4 =24 the lobe
S’_, intersects Us, U, and all higher-order U lobes; for
h =24.5 the lobe S, intersects also U, and U, and for
h =25 it intersects also the lobe U,. The larger number
of intersections produces a larger degree of mixing of the
phase space, therefore chaos appears faster.

(9) As the lobes S’ become longer with 4 they become
tangent to new lobes U for certain values of 2. Then new
stable periodic orbits are formed nearby, which exist for a

small range Ah of values of 4 before they become unsta-
ble, by period doubling cascades.

(10) New tangencies, and therefore new stable periodic
orbits, appear for arbitrarily large 4 in a bounded system.
On the other hand, in an unbounded system the number
of tangencies reaches a maximum as 4 increases, but from
then on the asymptotic curves terminate because of es-
capes.

(11) When the energy 4 increases beyond the escape en-
ergy h.., some orbits escape to infinity. In the present
case the equipotentials for h > h.. have two openings
that are crossed by two unstable periodic orbits, called
Lyapunov orbits. Any orbit crossing a Lyapunov orbit
outwards escapes from the system. Such an orbit, start-
ing at a given initial point P in the positive (negative)
time direction, has a finite number of intersections with
the Poincaré surface of section as t — + o (£ — — ).

(12) When h > h_ the asymptotic curves of some un-
stable periodic orbits terminate at particular limiting
asymptotic curves. In the present model there are four
limiting asymptotic curves, formed by the asymptotic
curves of the two Lyapunov orbits. Two of them corre-
spond to orbits escaping as t— + « and two more corre-
spond to orbits escaping as t— — . The characteristic
curves of unstable periodic orbits leading to escapes ter-
minate by making infinite spiral rotations around these
limiting asymptotic curves.
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